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The new area of nematic colloidal systems (or nematic emulsions) has been greatly guided by the fruitful
analogy between the colloidal nematostatics and electrostatics. The elastic charge density representation of the
colloidal nematostatics [V. M. Pergamenshchik and V. O. Uzunova, Eur. Phys. J. E 23, 161 (2007); Phys. Rev.
E 76, 011707 (2007)] develops this analogy at the level of charge density and Coulomb interaction. It shows,
however, that the colloidal nematostatics in three dimensions substantially differs from the electrostatics both
in its mathematical structure and physical implications: the elastic charge and multipoles are dyads; similar
charges attract while opposite charges repel each other, and so on. In this paper we consider the interaction
between an elastic charge and elastic dipole with a nematic surface (wall) at which the director alignment is
fixed. Using the mirror image method of electrostatics as a guiding idea, we develop the mirror image method
in the nematostatics for arbitrary director tilt at the wall. A wall is shown to induce a repulsive 1/R* force on
the elastic dipole which, in general, is accompanied by its reorientation. External torque on the colloid induces
an elastic charge therein and triggers switching to the 1/R? repulsion. The dyadic nature of an elastic dipole is
shown to be essential: a particle-wall interaction potential cannot be obtained in phenomenological theories
with a single component dipole. In the introductory sections we discuss connection between the director-
mediated interaction in two and three dimensions and the electrostatic interaction and consider different
symmetries of elastic dipoles. Conservation of the torque components exerted upon colloids is shown to play
the role of Gauss’ theorem and determines the elastic charge dyad.
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I. INTRODUCTION

Particles immersed in a nematic liquid crystal (NLC) in-
teract via the director field n which mediates the distortions
induced thereby. The fact that this interaction is of a long
range and reminds one the electrostatic interaction was
brought to the broad attention by Brochar and de Gennes [1]
almost 40 years ago and later by Lopatnikov and Namiot [2].
Over the last 15 years the study of this director-mediated
interaction has developed into a rapidly growing branch of
the physics of LCs, i.e., the physics of nematic colloidal
systems or nematic emulsions [3] (to appreciate the latest
scale of this area, see [4]). Depending on the colloids’ size
and nature, these systems can be very different. The recent
development of the field has been inspired mostly by a great
diversity of a few- and many-body ordering phenomena in
microemulsions with micrometer and submicrometer size
colloids [5-11]. However, there is also an important class of
nematic nanoemulsions with molecular size colloids (dop-
ants) and supramolecular size colloids. One example is a
NLC doped with chiral molecules [12] that induce the well-
known macroscopic cholesteric ordering [12]. Moreover,
nowadays an intensive investigation of thermodynamics
[13-16] and physical chemistry [17] of a NLC doped with a
great variety of different solute molecules and micelles [18]
is under way. A very special example comprises dye-doped
NLC: under the action of light some of them demonstrate
spectacular orientational Jdnossy effect [19] which is pos-
sible only in anisotropic media. It has been recently shown
that the supramolecular aggregates [20], interacting via the
director field, and other supramolecular complexes, includ-
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ing dye molecules [21], can also play the role of colloids and
facilitate the light-induced orientational effect in these “su-
pra” nanoemulsions. One more class comprises nematic fer-
roemulsions [22]. Colloids of different origin (e.g., inclu-
sions and defects, soft and rigid) and their interaction have
also been studied in different smectic LC phases and their
free standing films and membranes (see, e.g., [23-27] and
review [28]).

This ordering diversity owes its existence to the long-
range electrostaticlike interaction via the director field. The
rapid development of the field of nematic emulsions has been
greatly guided by this important similarity between the nem-
atic emulsions and electrostatics. The director-mediated in-
teraction possesses many properties characteristic of the
interaction between electric dipoles and quadrupoles
[2,3,5,6,29-37] which has been verified experimentally
[38—44]. The deep analogy between the two very different
areas of physics not only provides a useful theoretical tool to
study the field of anisotropic colloidal systems, but has been
perceived as the fact of a fundamental physical significance.

Recently we developed the electrostatic analogy in nem-
atic emulsions at the level of charge and its density [45,46]
and showed that the Coulomb interaction, which is funda-
mental to the electrostatics, has an important implication in
the physics of nematic emulsions, too. The director-mediated
Coulomblike interaction of two colloids was shown to be
fully determined by external torques applied to the colloids.
Let the unperturbed director at infinity be along the z axis
and I' | be the vector of a transverse external torque exerted
on a particle, Fig. 1: T, has nonzero transverse x and y
components and zero z component, i.e., I' | =(T" 1ol LYy,O).
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FIG. 1. General deformation source (“particle”) in 3D. Inside
the gray sphere the deformations can be very large (e.g., induced by
point defects or strong anchoring of a real colloid). But outside the
larger sphere the deformations are weak and linear which allows for
the electrostatic analogy. The particle itself is of the dipolar type,
but an external torque upon it can charge it, and it becomes an
elastic charge. The arrow conventionally shows the director defor-
mation by the torque I" normal to the unperturbed director n,, (and
to the figure plane).

This torque induces and fully determines a two component
elastic charge of a particle which manifests itself both in the
two transverse director components, scaling with the dis-
tance R as 1/R, and in the interparticle interaction. Two par-
ticles under the action of external torques interact via a
Coulomb-like 1/R E)otential where the scalar product
P rP)=—C P rP +1Vr?) plays the role of the
product of two electrostatic charges [45,46]. Because of the
difference between the scalar electrostatics and vector nema-
tostatics, the elastic analogs of the surface charge density,
charge, and higher multipole moments consist of two tensors
(dyads). The multipole moments are naturally expressed via
the elastic charge density which is determined by the two
transverse director components on the surface imposing the
director deformations. The interaction of the axially symmet-
ric sources, considered phenomenologically in [35], obtains
as a particular case of the interaction of the two corres-
pondent (diagonal, cf. see Sec. IV B) multipole dyads.
The small parameter of the theory is the ratio a/R
=(colloid size/distance between colloids). For small a/R the
theory provides all the tools available in the electrostatics,
e.g., for solving different boundary problems that can occur
in the nematostatics of anisotropic emulsions. In this paper
we apply the nematostatics developed in [45,46] to the inter-
action between an elastic charge (dyad) and elastic dipole
(dyad) with a wall (surface bounding the NLC) with different
director alignments, which is the elastic counterpart of the
well-known electrostatic problem solved by the method of
images (such experimental situation with a planar wall was
recently explored in [44]). In the next section we briefly
introduce the colloidal nematostatics of Refs. [45,46], dis-
cuss the connection between the director-mediated interac-
tion in two and three dimensions and the electrostatic inter-
action, and show that the integral form of the torque balance
plays the role similar to that of Gauss’ theorem in the elec-
trostatics. Then the theory is applied to the colloid-surface
interaction.

The nature of a surface-colloid interaction is very differ-
ent when the separation between a colloid surface and a

PHYSICAL REVIEW E 79, 021704 (2009)

plane-wall surface is microscopic and macroscopic. A micro-
scopic scale is determined by the nematic coherence length
which is just a few molecular lengths, i.e., a few nanometers.
At a microscopic separation, two surfaces interact via the van
der Waals, wetting, and Casimir forces [50,51]. In this case,
a spherical colloid-wall attraction force has been measured
by atomic force microscopy (AFM) [52-54]. As all the three
forces vanish a few nanometers away from the surface, the
aim of this study was not the colloid’s behavior in itself, but
the surface nematic and smectic ordering (wetting) at a
nematic-isotropic transition.

The field of colloidal emulsions deals with macroscopic
distances, and here we are interested in macroscopic colloid-
wall separations of order of micrometers. In this case the
interaction is mediated by macroscopic director distortions
and the origin of the forces acting in the system is elastic. So
far the problem of calculating a mechanical torque on a par-
ticle near a NLC surface and its energy has been specified by
a particular particle’s shape, anchoring, and orientation, and
thus could be addressed only numerically [55,56]. The re-
sults of Refs. [45,46] considerably simplify the problem. The
specific parameters of a particle now enter the problem via
its multipole moment, and the problem reduces to the inter-
action between a wall and an elastic multipole. Here we
show that this problem can be solved analytically in a uni-
versal form by means of an image method specific for the
nematostatics. Using the mirror image method of electrostat-
ics as a guiding idea, we develop the mirror image method in
the nematostatics for arbitrary director tilt at the wall. A wall
is shown to induce a repulsive tilt-dependent 1/R* force on
an elastic dipole and its reorientation to the minimum energy
alignment. The external torque, however, induces the elastic
charge in this colloid and triggers switching to the 1/R? re-
pulsion. The calculations demonstrate that the dyadic nature
of an elastic dipole is essential. In particular, our exact result,
that the repulsion from a homeotropic wall is 1.5 times
weaker than that from a planar wall, cannot be obtained in
phenomenological theories with a single component elastic
dipole.

II. ELASTIC CHARGE DENSITY REPRESENTATION
OF THE COLLOIDAL NEMATOSTATICS

A. Torque balance, Gauss’ theorem, and elastic
charge in three dimensions

The fundamental physical quantity of electric charge is
purely phenomenological and must be postulated in the
theory of elementary particles. In contrast, the nematostatics
of the director field n allows for introduction of two different
charges. Electrostatic potential is a scalar described by the
linear Laplace (or Poisson) equation. It is the linearity that
underlies the definition of the electric charge and its density
as the source of electric field. At the same time, n is a vector
field which reduces to a single variable, described by a linear
equation (in the one constant approximation) only in two
dimensions (2D). Owing to the linearity, the deformation
source can be straightforwardly established: core of a point
defect plays the role of a charge in 2D [12,47-49]. The in-
tegral, expressing the topological invariant, is independent of
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the integration contour. This property plays the role analo-
gous to Gauss’ theorem in electrostatics while the invariant
itself plays the role of a conserved charge. As a result, the
two-dimensional nematostatics is similar to the two-
dimensional electrostatics with its logarithmic potential: dis-
clinations with topological charges of the same sign repel
one another and those with topological charges of opposite
sign attract one another.

In three dimensions (3D), however, the analogy between
topological defects and charge is completely lost. In 3D, the
field m is described by highly nonlinear equations [12] so that
point defects, though remain topological invariants, cannot
be linearly connected with the distortions of n they induce
[35,3]. Here the deformation source is the director distribu-
tion in a domain of the size ~a [45,46], Fig. 1. This director
distribution can be induced by surface of a real particle, by
topological defects with zero total topological charge [3,35],
or by an external torque concentrated inside the domain [20].
We call such a compact deformation domain a particle. Con-
sider a three-dimensional director field n(r) which far from
the particles coincides with the uniform unperturbed director
n,,=(0,0,1) parallel to the z axis. In the one-constant ap-
proximations assumed in this paper, the distortion free en-
ergy functional for the area V outside all the particles has the
form

F{n}=§ f (Vn, - Vi )d*V. (1)

A small perturbation of n., induced by a particle at a dis-
tance r>a, satisfies the Laplace equation An,=0 and has a
transverse form (nx,nv,O): the perturbation of the director’s z
component is negligible and 7, can be set equal to 1. From
the Laplace equation the transverse components are obtained
as

n,(r) = % +3 (dtr; D, 5 (Q,r:;':r) +o (2)

where r=x,y. It is natural to identify the coefficients with the
subscript 7 in this expansion with the #th component of elastic
charge, elastic dipole, and elastic quadrupole, respectively.
We seek the elastic analog of charge, following de Gennes’
idea outlined in [12].

Due to its elasticity, a NLC transfers mechanical torque. A
torque, exerted on a particle, induces director deformations
in the ambient medium. Nonzero deformations result in a
nontrivial torque balance in the director field. It is this torque
balance that is described by the standard Euler-Lagrange
equations minimizing the free energy functional. The torque
balance implies two torques at any spatial point. Namely, the
balance at a given point shows that an elastic torque is ap-
plied at both sides of any virtual surface passing through this
point, and that these two torques have equal magnitudes and
opposite signs [12]. Thus, a torque on a particle, located
within a closed surface S, is transferred from inside S to
outside S, the total torque being conserved. It means that
certain torque density, integrated over an arbitrary closed sur-
face, is equal to the total torque applied inside the surface
irrespective of its form. In the static equilibrium, only a
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transverse external torque I'; =(T',,T’;,0) can be exerted on
a particle; a longitudinal torque I', cannot be balanced as a
rotation about the z axis does not change the elastic energy,
I',=0. In the one-constant approximation, the integral, which
expresses the conservation and transfer of a torque I' |, is of
the form [12]

r,= Kf € aup(Tp0gN 40y + 1,051 ,)dS g, (3)
s

where K is the elastic constant, &,,, is the absolute antisym-
metric tensor, all indices but ¢ run over x,y,z, and summa-
tion over the repeated indices is implied. The integral in the
right-hand side of Eq. (3) does not depend on the choice of
enclosing surface S, and the equality (3) reminds one Gauss’
theorem with T', in place of the electric charge. To further
justify this connection one notices that integral (3) over a
remote surface S vanishes for any term in the expansion (2)
except for the first one. Substituting n,=¢,/r in Eq. (3) and
integrating over a sphere gives I'y=—4nKq,, I'.=47Kq,, or

[ X n.],

4
q; 4K (4)

Thus, the tentative conclusion is that, in 3D, the role of
Gauss’ theorem and a charge is played, respectively, by the
conservation of an elastic torque, transferred via the director
field, and by two transverse components of an external
torque exerted on a particle, Fig. 1. This is fully justified by
calculating the Coulomb-like interaction in the elastic charge
density representation [45,46].

B. Dyads of elastic mutipoles and their interaction
via the director field

The results of Refs. [45,46] can be summarized as fol-
lows. The director field outside a single particle is fully de-
termined by the director distribution on its surface. Consider
a deformation source specified by the director field n, on the
surface of an enclosing sphere S with radius a. Elastic mul-
tipoles must be defined as to reproduce the solution of the
Laplace equation outside S exactly in the form (2). This is
achieved as follows. We introduce the quantity

o,(s) =n,(s)/a*, (5)

which plays the role of a two component surface elastic
charge density at point s on the sphere S. Using natural anal-
ogy with the electrostatics, we define the two component
elastic multipoles via the surface charge density as the fol-
lowing integrals over the sphere S enclosing the particle:

a
4= f od’s, (6)
4m)g
2
dta=a_f Utyadzs’ (7)
4w
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a3
Oup=g L 0(3varp= 8,0, ®)

where v is the vector of unit outer normal to S. These defi-
nitions result exactly in the director expansion (2). Making
use of these definitions, we obtained interaction potentials of
two particles with similar multipoles in the leading order in a
small parameter (a/R), where R is the modulus of the sepa-
ration vector R. Interaction of two “charged ” particles with
nonzero ¢, is Coulomb-like,
$g® 1)

U =—dmK =- , 9
Coulomb 77 R 47KR ( )

where we used relation (4), and F(i) is the transverse compo-
nent of the torque exerted upon the ith particles. The above
connection between the elastic charge and external torque is
thus fully justified. Equation (9) shows that, depending on
the sign of the scalar product (FT)-F(E)):I‘TLF(E?’, the elas-
tic Coulomb interaction can be attractive or repulsive. In
contrast to the electrostatics and two-dimensional nemato-
statics, the charges with the same sign attract and with dif-
ferent signs repel one another (“parallel torques” attract
whereas “antiparallel torques” repel one another). Although
the colloids must be anchored to the director, the Coulomb-
like interaction does not directly depend on their specific
shape and anchoring. Instead, the elastic charge is deter-
mined by the coefficients describing the torque exerted upon
the colloid by a given type of external field. For instance, this
can be the vector of permanent electric and magnetic dipole
or electric and magnetic polarizability tensors of a given col-
loid.

If external torques are absent, the interaction energy is
expressed solely in terms of particles’ multipoles. The inter-
action between two “dipolar” particles is of the form

@"-a?)-3(d" - u)(d? - u)
R3

Udd=—127TK 5 (10)

where u=R/R is a unit vector along the separation direction
[57]. Equations (2) and (5)—(10) (along with the quadrupole-
quadrupole potential derived in [45,46]) suggest the follow-
ing interpretation. ¢, is the tth component of the elastic
charge and o(s) is its surface density at point s on the
sphere. The vector d,; and tensor Q, are the sth dipole and
quadrupole moments determined in the standard way by the
surface charge density o, on the sphere. As o, and o, are
separate sources, they determine not only the x and y director
components outside the particle, Eq. (2), but also two inde-
pendent components (dyad) for each multipole moment, i.e.,
g4, and q,, d, and d,, Q, and Q,, and so on.

As the nematostatics is actually nonlinear, the above re-
sults of the linearized theory are fully justified under the
assumption |n,| < 1. In Refs. [45,46] we addressed the natural
and practically important question as to how large can be |n,|
that the nonlinear corrections can be safely neglected. In
turns out that the restriction on |n,| on a sphere, enclosing the
particle, is not strong: |n,| < Ja/R. Moreover, calculations in
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[45,46] showed that Eq. (7) gives quite an accurate director
field for the topological dipole of Ref. [35] even when |n,| is
as large as 0.8.

C. Rotation about the homogeneous director n.,
and second rank tensor of the elastic dipole

The interaction potentials (9) and (10) suggest that there
are two elastic charge scalars and two elastic dipole vectors
(and two second rank quadrupole tensors). When is this in-
terpretation correct? Imagine that the director distribution at
the source, n, and ny, changes but this change has nothing to
do with a transformation of the reference frame. Then the
new components after the change, n; and n",, have no con-
nection with their old values, n, and n,, via a tensorial trans-
form in the the real x, y space. Similarly, the new values of ¢,
and d, , have no connection with their old values via a ten-
sorial transform in the real x, y space. Such a change can be
considered as a transform in some intrinsic space with the
coordinates n, and n, or d, and d,, reminiscent of the isoto-
pic space of nuclear physics. Thus, under such an “intrinsic”
transformation, n, and n, do not transform as components of
a spatial vector. Then ¢, is not a spatial vector but can be
viewed as two independent charges, a dyad; similarly, 4, , is
not a spatial tensor but a dyad of two independent vectors
d, . and d, ,. Another obstacle for viewing the object d, , as
a tensor is that 7 runs over 1 and 2 whereas « runs over 1, 2,
and 3. There is an important case, however, when ¢, and d, ,
are a two-dimensional vector and second rank tensor, respec-
tively.

As a rotation about the homogeneous director n,,, which
is along the z axis, does not alter the free energy of a particle,
all the elastic multipoles should be determined up to an ar-
bitrary azimuthal angular variable ¢. Let us consider the sub-
script @=t" with the values 1 and 2 and with the value «
=3 separately. The indices taking values 1 and 2 will be
denoted ¢ or t'. Then g, and d, 5 are transformed as a two-
dimensional vector, and d,,s is transformed as a second rank
tensor. The vector ¢, is fully determined by the external
torque vector; d, 3 will be addressed later on. Consider d,
and find its general ¢-dependent form induced by a rotation
of the particle about the z axis. A general second rank tensor
d,; 1s a sum of its symmetric and antisymmetric part. Here
we consider only symmetric tensors. In the proper reference
frame Oy, a symmetric tensor d=||d,,|| reduces to its diagonal

form d,, i.e.,
d (D” 0 ) (11)
"\ 0o D,/

A symmetric second rank tensor can be decomposed into an
isotropic part = ¢;; and anisotropic traceless part. In particu-
lar, d, (11) (i.e., d in the particular reference frame O,) can

be written as
e el )
0=No 1) N0 1)

where d=(D,+D,,)/2, A=(D;;—D5,)/2. Now we want to
find the form of the tensor d in an arbitrary reference frame
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0, that can be obtained from O by rotating it by an angle ¢
anticlockwise (the angle ¢ is counted from the x axis). Such
a rotation induces the following transformation of an arbi-
trary vector r=(ry,ry): r—r’'=(r{,r}), where r;=R,;r;, and
the matrix ||R,,/| is of the form

= ( 20 )
—sin ¢ cos ¢

The second rank tensor d is transformed to the reference
frame O as d,» =R R, ;+d,, . In the context of Eqgs. (12) and
(13) this gives

10 cos2¢ —sin2¢
d=d +A . . (14)
01 —sin2¢ —cos2¢
As discussed below, if the tensor d,,, is symmetric then the

vector d, 5 vanishes. Thus, the dyad of dipole “vectors” in an
arbitrary reference frame Oy has the form

d,=(d+ A cos2¢,— Asin2¢,0),

(13)

d,=(-Asin2¢,d - A cos 2¢,0). (15)

The angle ¢ can also be viewed as a rotation angle of the
particle itself in the fixed reference frame O, where the di-
pole has the diagonal form d, (14). Then ¢ is the angle of an
clockwise particle rotation from its special diagonal state
d(¢$=0)=d, to an arbitrary state d: after this rotation the
form of the dipole tensor d(¢) will be given by formula (15).
Note that formula (7) gives the following estimates for the
magnitude of the coefficients d and A: d~a*(|n,|) where
(|n,|) is the average of the absolute value of the transverse
director component over the enclosing sphere of radius a;
while A~a2((n)—(n,))):

In the case of a general asymmetric particle (which im-
plies an asymmetric director distribution in its vicinity), the
tensor d,,» has a finite antisymmetric part and the components
d, 5 are nonzero. The case of a symmetric tensor considered
above corresponds to certain symmetry of the source par-
ticle. The rotational symmetry C, of any order n about the
unperturbed director is not sufficient to eliminate an antisym-
metric part of d,,» and vector d, 5. In general, these two quan-
tities are finite if the director distribution has a helical com-
ponent related to twist distortions. Such a deformation source
has chiral properties and will be considered elsewhere [58].
Important symmetry elements are reflection planes passing
through the z axis. A particle with just a single such reflec-
tion plane has no chirality, its tensor d, is symmetric, but
the vector d, 5 is not generally zero. We call such particles
general biaxial. Two mutually perpendicular reflection
planes passing through the z axis eliminate the vector d, 3,
i.e., d,3=d,3=0, and particles with this symmetry constitute
an important particular case of colloids which we call (just)
biaxial. It is this case of a biaxial colloid that was considered
above.

A general biaxial particle is biaxial in the x, y plane, its
director distribution in the x, y cross sections has mirror sym-
metry with respect to one of the two principal axes. A just
biaxial particle is more symmetric: its director distribution in
the x, y cross sections has mirror symmetry with respect to
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FIG. 2. Geometry of the problem considered. A wall (bold line),
a particle at Oy, and its image at O,. The z axis, which is along the
unperturbed director n.., makes the angle 6 with the normal to the
wall. The x axis lies in the figure plane whereas the y axis is normal
to it and directed from the reader. The perturbation n, of n., vanishes
on the wall: n,=0, t=x,y. The director field outside the dashed
spheres, representing a finite size of the particle and its image,
obeys linear equations.

both principal axes. An important particular case of a biaxial
particle is an azimuthally symmetric particle with the sym-
metry C,, (infinite order rotational symmetry about the z
axis plus symmetry with respect to any plane passing
through the z axis). Such a particle is both uniaxial and non-
chiral; here we call such a particle uniaxial. Note, however,
that an azimuthally symmetric (uniaxial) particle with the
symmetry C,, without reflection planes (e.g., uniaxial heli-
coid) is a chiral source and has nonzero both antisymmetric
part of d,» and vector d, 5 [58].

Thus, under a rotation of a biaxial particle about the z axis
its elastic dipole transforms as a second rank 2X?2 tensor
(14) with the isotropic fraction of magnitude d and aniso-
tropic fraction of magnitude A, in which ¢ is the angle of the
anticlockwise rotation of the particle from the diagonal dipo-
lar state. All of the x, y cross sections of a uniaxial C,,
particle are circular and have no anisotropy, A=0; this can be
easily verified by choosing an arbitrary azimuthally symmet-
ric director distribution [surface charge density (5)] and in-
tegrating over the sphere in Eq. (7). Particles with a finite A
are biaxial in the x, y plane, their director distribution in the
X, y cross sections is not azimuthally symmetric, e.g., ellip-
tical.

The above formulas can be used to solve boundary prob-
lems similar to those of electrostatics. The simplest boundary
problem is the interaction of an elastic multipole with a plane
surface bounding the nematic sample and imposing a fixed
homogeneous director alignment. Here we consider this
problem for the elastic charge and dipole.

III. THE MIRROR IMAGE METHOD

Consider a single particle at distance /& from a plane sur-
face of a NLC sample (wall). We assume that the wall’s
anchoring is strong, the director alignment in the sample far
from the particle is homogeneous and parallel to the z axis,
n,,=(0,0,1), but the angle 0 it makes to the surface normal
is arbitrary, Fig. 2; =m/2 and 6=0 correspond to the planar
and homeotropic surface director alignment, respectively. To
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justify the linearized theory, i is assumed to be large com-
pared to the particle size ~a. As the director on the wall is
fixed, the boundary condition consists of two equations

n,(r,,) =0, fr=x,y, (16)

which have to be satisfied for any point r,,,; of the wall. The
problem of a particle-wall interaction can be solved using the
mirror-image method. Let us show that the boundary condi-
tions (16) can be satisfied by placing an image particle with
the multipole moment of the same order on the other side of
wall.

Consider an elastic multipole at a distance /2 from a wall
and its image multipole located at the mirror point behind the
wall at the distance R=2h from the real particle, Fig. 2.
Variables, attributed to the particle and its image, will be
indicated by index 1 and index 2, respectively. The director
field, which determines the multipoles, is fixed at the spheres
S, and S, of radius a enclosing, respectively, the particle and
its image. To the order a/R, the transverse director compo-
nents n, on the wall are given by the sum [46]

n(r) = n§1>(r)(1 - ﬁ) + n§2>(r)<1 - 3), (17)
r

r

where n(l) is the far field (2) of the single particle, r;=r

-0y, 'y=r—0,, where 0, and 0, are the radius vectors of the
two centers. Equation (17) explicitly shows nonadditivity of
the fields produced by the two particles: n,= n(l) on S, (r 3
—a) and n,= nﬁ on S, (ry=a); the add1t1v1ty n,(r)~n
+n, @) takes place only when both a/r;<<1 and a/r,<<1, i.e.,
far from the particles.

Let us set the reference frame with the onset on the wall
between the particles so that the xz plane (with z axis along
n,,) is perpendicular to the wall, and the y axis is normal to
the figure plane, Fig. 2. Then 0,=(—A sin 6,0,-h cos 6), 0,
=(hsin 6,0,k cos 6), an arbitrary point of the wall r,,;
=(~z cos 6,y,zsin ), and

ri=(—zcos @+hsin 6, y, zsin 6+ h cos 6),

r,=(—zcos @—hsin 6, y, zsin 6—hcos 6). (18)

The particle-image separation vector is R=0,-0;=Ru,
where u=(sin #,0,cos 6). In the context of Eq. (17) and the
equality r,=r,, the condition n,=0 on the wall gives

o 52)(rwall) = 0’

ny (rwall) +n

These equations determine the components of the image
multipole. We will find the image charge and image dipole
for arbitrary tilt 6 and then, by substituting its components in
the interaction energy (9) or (10), calculate the interaction
between the colloid and the wall. Below we consider a
charged, nonchiral C.,, uniaxial, biaxial, and general dipolar
particle individually.

t=x,y. (19)

IV. PARTICLE-WALL INTERACTION IN A NLC
A. Elastic charge-wall interaction

The charge q, can be induced by an external field
exerting the torque I' with the components I, 47TKq(1) and
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n=0

FIG. 3. Elastic charge at a wall with fixed planar (upper sketch)
and homeotropic (lower sketch) director alignment. Elastic charge
q, induced by an external torque I" and its image —¢, induced by the
image torque —I'. The director at the wall remains unperturbed and
equal to n.

Fx=—47qu§,'); the image charge qﬁz) is on the other side of
the wall at the distance A from it, Fig. 3. The director field
of a single elastic charge 1s n()—qt’)/ri, Eq. (2). Then from
Eq. (19) we obtain q )=—¢", r=x,y. Thus, the particle and
its 1mage have opposite charges which corresponds to F @
=—r® ', Fig. 3. As two opposite elastic charges repel one
another the elastic charge-wall interaction is repulsive. The
repulsion force obtains from the interaction energy (9) of the
torques I' | and —I' | by differentiating with respect to R at
R=2h, ie.,

r

e — 20
167wKh? (20)

F g-wall =
The result depends on the direction of n., and thus on the
surface tilt only via the trivial relation I' | =T'—(I"-n.,).

B. Interaction of a uniaxial C, dipole with a wall

Now consider the interaction between a wall and an elas-
tic dipole dyad (d,,d,), Eqs. (7) and (15). In general, each of
d, and d, has three nonzero components. Symmetry makes
some of them vanish. For a uniaxial C., particle the dipole
dyad is isotropic: d,;»=dd,,. Consider this simple and prac-
tically important case of colloids. For instance, such are the
so-called topological dipoles, i.e., spherical particles with ho-
meotropic boundary conditions with a companion hyperbolic
hedgehog or disclination ring [3,35].

The dipole dyad of a uniaxial particle obtains from Eq.
(15) by setting A=0,
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d\V=(d.0,0, d!"=(0,d,0). (21)

The interaction energy (10) of two uniaxial C., dipolar par-
ticles with isotropic coefficients " and d® is obtained in
the form

127Kd"Mad®

'S (1-3cos’ ), (22)

ld-1d =

where 6 is the angle the separation vector R (which is along
the surface normal) makes with the far homogeneous director
n,.. To solve the boundary condition (19), the image-dipole
d(z) is chosen in the form

d? = (d® cos ¢,0,— d? sin ),

d?=(0,d2,0), (23)

where i is the angle d(z) makes with the x axis. The director
field of a single ith dlpole at point r,,,; of the surface is
nE’)=3(d§’)~r,~)/ r?, see Eq. (2), and the boundary conditions
read

@ r)+@”-r)=0, r=xy. (24)

Substituting Egs. (21), (23), and (18), into Eq. (24) gives the
equations

h(d sin 6 - df) sin 6 cos ¢+ d)(cz) cos 6sin ¢) — z(d cos 0
+d? cos Ocos Y+ d? sin Osin ) =0,

d+d?=0, (25)
which are equivalent to the system

dsin 0—d'? sin(6— ) =
d cos 0+ diz) cos(6— ) =0,

2
d+d?=0. (26)
This system is solved by di2)=d§,2)=—d, =20, ie.,
d%? = (- d c0s 26,0,d sin 26),

d? =(0,-4,0). (27)
Substituting Eq. (27) into (10) with u=(sin 6,0,cos 6)

gives

d*(sin® 6+ 2)
Urg= 127K—— 35— (28)

Differentiating (28) with respect to R at R=2h, we obtain
the force with which the wall repels a uniaxial dipole,

9d(2 + sin” 6)
Fraowan= WK4—h4' (29)

Now consider two important particular cases of the planar
and homeotropic wall.

For the planar wall #=1/2, the image has the form d(z)
=(d,0,0),d 2)—(O —d,0), Fig. 4, and the repulsive force has
the magmtude

PHYSICAL REVIEW E 79, 021704 (2009)

n=0
z i

(b)

FIG. 4. Dyad of elastic dipole at a wall with fixed planar direc-
tor alignment. The dipole (left) with d,=(d,0,0) and d,=(0,d,0)
and the image (right) with d(z) (d,0,0) and d(z) (0, d 0) shown
in two mutually perpendlcular planes: xz plane normal to the wall
(upper sketch) and planes x=—h (left) and x=4 (right) parallel to the
wall (lower sketch).

27d°
Fld—wa/l,planar: WK4_h4 (30)
For the homeotropic wall 6=0, d =(-d,0,0), (2)

=(0,-d,0), Fig. 5, and the repulsive force has the magmtude

94>

%. (31)

Fld—wall,hom =7K

Thus, the force Fiyyainom 18 1.5 times weaker than
F\ dwalt,pianar- In this concern we would like to emphasize that
the results, obtained above by means of the nematostatics of

FIG. 5. Dyad of elastic dipole at a wall with fixed homeo-
tropic director alignment. The dipole (left) with d,=(d,0,0) and
d,=(0.d,0) and the image (right) with d_iz)z(—d,0,0) and d;2)
=(0,—-d,0) shown in the xz plane normal to the wall.
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Refs. [45,46], show that even in the simplest case of a ho-
meotropic and planar wall the dyadic nature of the elastic
dipole is essential. Indeed, a single dipole component is in-
sufficient to satisfy the two boundary conditions (16) on the
wall. Therefore, phenomenological theories, such as [35],
which deal solely with a uniaxial dipolar particle and de-
scribe it by a single coefficient d, cannot be used in the
problem of a particle-wall interaction. Nevertheless, let us
compare our result with what could be “naively” obtained
from the phenomenological approach in the simplest cases.
When the poles of a single dipole interchange, the dipole
changes its orientation to the inverse one and is described by
the coefficient (—d). In this situation, the image dipole can be
chosen only in the form of the single-component dipole with
the same or inverted sign. In the homeotropic case, the image
dipole d®=—-d allows to eliminate the particle-induced per-
turbation n, on the wall and thus to satisfy the boundary
condition (19). In the planar case, however, the y equation
cannot be satisfied: the choice d®=-d is unacceptable as it
would result in attraction which is obviously incorrect,
whereas the choice d®=d satisfies only the x equation (19).
Nevertheless, this last choice is the only possible one in the
sense that at least it results in a repulsion from the wall.
Then, using Eq. (22) with |dVd®|=d?, one obtains for the
planar (6=/2) and homeotropic (6=0) cases, respectively,
the following formulas:

~ 94>
Fld—wall,planar = WKW s

_ 184>
Fawattrom = TK FTE (32)

Apart from the difference in the coefficients, the “naive”
prediction is that the repulsion from a wall with homeotropic
anchoring is twice as strong than that from a wall with planar

anchoring, F'1y.ainom! F'1 d-waitpianar=2- This is in contrast to
the above exact result

Fld—wall,hum/Fld-wull,plunar = 2/3 . (33)

Prediction (33) can be verified in an experiment similar to
that recently reported by Pishnyak er al. [44] who studied the
interaction between colloids of the topological dipole type
[35] and a NLC surface with a planar anchoring. In a thick
cell with horizontal surfaces, the distance & from the lower
surface is set in the balance between the attraction due to
colloid’s weight and the elastic dipole-surface repulsion. The
ratio h;,/h,, of the equilibrium distance A, of a topological
dipole from a lower surface with a homeotropic anchoring to
the distance h, from that with a planar anchoring can be
estimated experlmentally and compared both with h,/h,
={2/3=0.9, followmg from the prediction (33) of this pa-
per, and with h,/h, ={2=12, following from the ‘“naive”
prediction (32). Note that the value of the coefficient d in our
theory, which does not enter the ratio #,/h,, is 1/3 of that
calculated numerically in [35] (see Refs. [45,46]).

Another interesting effect to observe is “charging” of a
colloid, i.e., inducing an elastic charge by exerting external
torque [e.g., by applying an electric (magnetic) field if the
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particle is ferroelectric (ferromagnetic)]. A torque on a col-
loid creates an elastic charge which is repelled from the wall
with a force (20). In the case of a dipole-type colloid, an
external torque would switch the ~~* dipole-wall repulsion to
a h™? charge-wall repulsion which can manifest itself, in par-
ticular, in a sharp increase of the equilibrium distance from
the wall.

C. Interaction of a general dipole with a wall

The mirror-image method can be applied to dipolar par-
ticles of arbitrary shape. In the general case, dipole dyads of
a real partlcle and its 1mage have all the three components,
dV=(aV, BV, 9V) and dP=(a!?, B, ¥?). Then the two
boundary condltlons (19) split 1nt0 the following three equa-
tions:

aﬁl) + a;z) - (751) + 752))tan 6=0,
(ail) - aﬁz))tan 0+ yfl) - 752) =0,

M+ B =0 (34)

This system is solved with

a'?=- o'V cos 260+ 9V sin 26,
2 1
oo
$P =V cos 26+ o'V sin 26. (35)

Thus, the dyad of the general image dipole has the form
dgz) =(- a ) cos 20+ vy (1) sin 26,— ﬂ(l , (]) cos 26
+ a ) §in 26). (36)
Substituting Eq. (36) into Eq. (10), we obtain

127K
Us=""3 [aVaD(1 +5sin® 6) + BV

+ #0901 +cos? 0) — oV Vsin? ). (37)

Differentiating (37) with respect to R at R=2h gives the
repulsion force of an arbitrary elastic dipole from the wall,
i.e.,

Fd—wall h4 [a(l)a(l)(l + 51n ‘9) + Btl)l[)’tl)

+7, )/t')(1+cos2 6)—a]) (l)sm 0]. (38)

It is important to remember that the components of the di-
pole dyad entering this formula depend on an arbitrary angle
¢, Eq. (15). This fact is trivial in the homogeneous space as
the particle energy is degenerate in ¢, but the presence of a
wall breaks the azimuthal symmetry around the z axis and
removes the degeneracy. This means that the angle ¢
changes as to minimize the interaction energy with the wall.
In other words, a particle, approaching wall from a large
distance, will turn to assume some particular orientation with
¢=¢,,. Below we consider an important particular case de-
scribed by formula (38) with an explicit ¢ dependence.
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D. Interaction of a biaxial dipole with a wall

Consider a biaxial particle whose elastic dipole, as
described in Sec. IIC, has no z components: from
Eq. (15) such a dipole dyad is obtained as d\"=(d
+A cos 2¢,~A sin 2¢,0), d'V=(~A sin 2¢p,d-A cos 2,0).
Identifying from this expression the components of dﬁl)
=(a£1),,351 , ygl)) and substituting them in Eq. (38) gives the
repulsion force

9K
Fogowa = ﬁ[(d2 +A%)(2 +sin® 0) + 2Ad cos 2 ¢ sin® 4].

(39)

Minimization with respect to ¢ [the free energy and the force
have the same ¢ dependence (39)] gives (i) ¢ is arbitrary for
a uniaxial C.,, particle with A=0, which is obvious as such a
particle is invariant with respect to rotation about the z axis;
(ii) ¢ is arbitrary at the homeotropic wall, =0, which is
obvious as such a wall does not break the symmetry about
the z axis, Fig. 5; (iii) for 0< < m/2, ¢=0 if A<O and ¢
=1/2 if A>0; this means that the longer axis of the parti-
cle’s x, y cross section turns parallel to the wall which obvi-
ously saves the elastic energy.

Particles producing director deformations with two sym-
metry planes passing through the z axis, referred to here as
just biaxial, can be exemplified by objects of the following
geometries: the topological dipole of Ref. [35] but created by
an ellipsoid with the normal surface anchoring rather than by
a sphere; by an elliptical cone with its long axis along n., and
planar anchoring at its lateral surface. In all of these cases the
equilibrium orientation of the long axis in the transverse x, y
cross section is parallel to the wall, and thus the repulsion
from a wall is accompanied by a reorientation about the ho-
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mogeneous director. The only exclusion is the case of
homeotropic wall when the only effect is the repulsion.

V. CONCLUSION

The nematostatics in 2D and 3D is very different. The
former is very similar to the two-dimensional electrostatics
where disclination cores are in place of electric charges. The
latter is similar to the electrostatics only in that its Green’s
functions are Coulomb-like [45,46]. In 3D the counterpart of
the electric charge density is a dyad, the elastic charge can be
induced only by an external torque whose components play
the role of the elastic charge dyad. In this three-dimensional
colloidal nematostatics, the Coulomb-like interaction has the
reverse sign. We described some implications of the colloidal
nematostatics in 3D and showed that, in contrast to the elec-
trostatics, the charges and dipoles are repelled from the wall
and turn about the homogeneous director. Using the simplest
geometries of a homeotropic and planar wall, we demon-
strated that the problem of particle-wall interaction in a NLC
can be solved only in the framework of the colloidal nema-
tostatics with its dyadic multipole structure. One interesting
effect, which can be derived from our calculations is that,
applying the field-induced torque on a dipolar colloid, one
can charge it, Fig. 1, thus switching the repulsion from the
nematic surface from the 1/h* to the 1/h? regime. Our re-
sults prompt experimental tests of the interaction in nematic
emulsions that, rather than dealing with a pair of particles,
can deal with a single colloid at a wall. In particular, the
prediction of the nematostatics can be tested by measuring a
relative repulsive force from a homeotropic and planar walls
with strong anchoring and comparing the results with the
prediction expressed by Eq. (33).
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